
CAPSTONE
LECTURE 1 Agile / Scrum

Background picture courtesy of Maree Reveley, used under Creative Commons Attribution-Share Alike 2.5 Generic license.

WHY A SOFTWARE DESIGN METHODOLOGY?

➤ In ye olden days, we thought hardware would be the
hard part of computing

➤ Simple programmers would just implement the specs
handed to them by the wise mathematicians and the
powerful hardware designers

➤ They would just need to know how to type, really.

WHY A SOFTWARE DESIGN METHODOLOGY?

➤ We now know this is not the case, of course.

➤ We’ve learned that having some sort of structure allows us to
develop software more effectively.

➤ “Effectively” can mean different things in different domains and
to different people!

➤ An “effective” nuclear power controller will have very different
benchmarks than an “effective” social media app.

➤ Many different methodologies have been created which focus on
different aspects of software development

WHY A SOFTWARE DESIGN METHODOLOGY?

➤ Different methodologies have different trade-offs. Examples:

➤ Speed of Development vs Quality of Software

➤ Documentation vs Dynamic Communication

➤ Up-front Design vs Flexibility in Design

➤ Feature Flexibility vs Planning

➤ Adaptive Estimation vs Prescriptive Estimation

➤ Risk-Averse vs Risk-Aware

➤ Iterative vs Sequential

WHY A SOFTWARE DESIGN METHODOLOGY?

➤ Our methodology: Agile / Scrum

➤ This is not the end-all, be-all of software development
methodologies, but for the projects in this class, it fits well

➤ Relatively lightweight

➤ Flexible

➤ Focus is on understanding customer needs

AGILE MANIFESTO

➤ http://agilemanifesto.org/

➤ Individuals and interactions over processes and tools

➤ Working software over comprehensive
documentation

➤ Customer collaboration over contract negotiation

➤ Responding to change over following a plan

http://agilemanifesto.org/

SCRUM

➤ Almost certainly the most popular agile methodology, although far
from the only one…

➤ Extreme Programming (XP)

➤ Lean Software Development (LSD)

➤ Dynamic Systems Development Method (DSDM)

➤ Feature-Driven Development (FDD)

➤ Agile Unified Process (AgileUP)

➤ Crystal {Clear, Yellow, Orange, Red, Maroon}

SCRUM

➤ Not an acronym!

➤ Comes from a rugby scrum - everyone on team moving in one
direction

➤ Teams are almost entirely self-managed

➤ Three roles

➤ Product owner - Act as representative for the customer

➤ Scrum master - They act as a “firewall” for the outside world and
a centralized place to ask for help / facilitate meetings / etc.

➤ Team - Everyone else: QA, developers, etc.

SCRUM

➤ Product-focused, end-user focused

➤ Transparency - Work should be visible to those who need to see
it

➤ Inspection - Work should be examined regularly to ensure that
the team is on the right path, or are doing things in a suboptimal
manner

➤ Adaptation - Work should be modifiable as requirements and
limitations are better understood

USER STORIES

➤ A description in “plain language” that states what the user needs
the software to do

➤ Related to requirements, but not exactly the same!

➤ Often in the Connextra template:

➤ As a <role>
I want <feature>
So that <reason>

USER STORIES

➤ Examples:

➤ As a manager
I want to the software to display the current status of each
engineer
So that I can more effectively write status reports

➤ As an Engineer
I want the ability to enter my daily status on a web page
So that I can update my manager on my status more easily

➤ As a user of Excel
I want a keyboard shortcut to select text
So that I can quickly grab text without spending extra time
reaching for my mouse

USER STORIES

➤ Allows us to not only see what they want, but more importantly,
why

➤ Gives us further flexibility if what they say they want is
difficult/impossible, but can do something else that gives them the
same result, or if there is a better way to achieve that objective

PRODUCT BACKLOG

➤ List of all items to be done

➤ In the beginning, should be all user stories

➤ Should be prioritized

➤ Differs from a Software Requirements Specification in that this is a
living document - it will change as defects are added, user stories
modified or removed, etc.

➤ Think of it as a kind of mixed to-do list / software specification

SPRINTS

➤ Software development is split into “sprints” - iterations of 2 - 3
weeks where work is done from the backlog (our sprints will be two
weeks)

➤ At the beginning of the sprint, there is a sprint planning session
where it’s determined which user stories will be worked on and
who will work on which ones

➤ These are not set in stone! Some may run over or you may work on
extra. There are various ways of estimating how much work can be
done in a sprint (story points, velocity, etc.) but we will not use
them for “our version” of Scrum

➤ This session is facilitated by the Scrum Master

SPRINTS

➤ At every point, and ESPECIALLY at the end of the sprint, you should
have WORKING software

➤ It does not need to be feature-complete, but compiles, runs, etc.

➤ Adding a feature means it has met “the definition of done”

➤ Code

➤ Documentation

➤ Integration

➤ Testing

STANDUPS

➤ Standups - usually daily and very short communications with the
rest of the team during the sprint

➤ What have I done in the last 24 hours?

➤ What do I plan to do in the next 24 hours?

➤ Do I need any help or have any blockers?

➤ You can probably do this 3x/week, probably not necessary for every
day

➤ However, this is up to you

➤ Facilitated by scrum master

RETROSPECTIVES

➤ At the end of each sprint, the team comes together to discuss:

➤ What went well?

➤ What could go better?

➤ What can we do different in the next sprint?

➤ Once again facilitated by the scrum master

SPRINTS, STANDUP AND RETROSPECTIVES

➤ For our class, every other Friday (end of sprint), we will meet in
class and have:

➤ Retrospective on previous sprint

➤ Sprint planning for next sprint

➤ Before leaving, Scrum Master and I will discuss results of sprint
planning

➤ Scrum Master position will change each sprint (different person
each sprint).

➤ Old scrum master handles retrospective; new scrum master
handles sprint planning

WELCOME TO SPRINT 1

➤ You can’t put together a backlog yet, but over the next two weeks:

➤ Meet with the customer. I recommend face-to-face interaction.

➤ Write up the needs of the customer in at least eight - ten user
stories

➤ Make basic decisions on software architecture (language,
frameworks, tools, etc.)

➤ Write up project proposal document and prepare “walking
skeleton”

WELCOME TO SPRINT 1

➤ “Walking skeleton” - The basic “skeleton” of the software. A “Hello,
world!” with test framework, basic code, etc. just to show that the basic
system is set up on everybody’s machines and that the software tools
work (git, compiler, testing framework, etc)

➤ Please use GitHub or GitLab if possible

➤ Make a private repository and add me (username: luisfnqoliveira on
both services) as a collaborator

➤ Have your walking skeleton program up and running by the end of
the sprint (two weeks from today)

➤ Proposal on how you will do the rest of the project, due at the end of
the sprint (two weeks from today)

MOST IMPORTANTLY…

Have fun!

