
INTERACTING WITH 
STAKEHOLDERS AND 

ELICITING REQUIREMENTS

CAPSTONE LECTURE 2



SITTING AT A DESK BY YOURSELF ALL DAY

SOFTWARE DEVELOPMENT IS NOT

• Communication is an essential aspect of 
software development 

• In some roles, communication is the majority of 
all work done 

• Yes, email can count as work



FIND OUT WHAT IT MEANS TO THE TEACHER OF THE CLASS

R-E-S-P-E-C-T

• Remember that others have skills that you don’t 
have, as well as different valuable experiences and 
perspective 

• Don’t go into conversations looking to mentally 
intimidate, but to get information 

• Remember to be polite - ask, don’t request unless 
necessary





(WHICH IS PROBABLY NOT ESPERANTO)

CARE ENOUGH TO LEARN THEIR LANGUAGE

• Different stakeholders care about different things, and 
will have different background 

• We don’t have a universal language (sorry, Esperantists), 
so you will have to learn their language 

• They may or may not learn yours! 

• To effectively communicate, you’ll need to understand 
what they need, how they think, and their domain in 
general



OR, “FIGURING OUT WHAT THEY WANT”

ELICITING REQUIREMENTS

• I prefer the term “eliciting” rather than “gathering” or 
“determining” because it acknowledges that the difficulties 
inherent in the task 

• People often have vague ideas of what needs to be done - they 
could not write a detailed specification if they wanted to (and for 
the most part, people don’t want to) 

• They may have many assumptions about how the software 
“should” work that you don’t know about 

• They may not have thought of, or have good answers for, many 
questions!



SIGNIFICANT PROBLEMS IN ELICITING REQUIREMENTS

• Non-technical users often may not be aware of “non-functional 
requirements” (quality attributes), or how to define acceptable 
values for them 

• Security 

• Performance 

• Scalability 

• Portability



SIGNIFICANT PROBLEMS IN ELICITING REQUIREMENTS

• Customers often do not think to say what the software should 
NOT do, or what to do in edge cases 

• What do to in case of invalid input? 

• What to do if subsystem, 3rd-party API, etc. goes down? 

• What are acceptable limitations and parameters to use of the 
system? 

• What happens when a resource is constrained? 

• What are preferred scenarios for graceful degradation?



SIGNIFICANT PROBLEMS IN ELICITING REQUIREMENTS

• Customers often have trouble being precise 

• Software Engineers are used to specifying system to an 
absurd degree (“computational thinking”) 

• May be qualitative when you need quantitative responses



SOLUTIONS

• Ask questions - ensure that you understand what has been asked 
of you 

• Repeat back what was said in your own words 

• Be as clear as possible - avoid pronouns! 

• “It gets the thing, it goes to the other thing, and they see it” 

• “The fetcher downloads the weather data, and sends that data 
to the parser, which generates a web page and displays it to the 
user.”



SOLUTIONS

• Paper prototyping 

• “A picture is worth a thousand words” 

• Draw what you think the system should look like, or 
have them do it 

• Have them interact with it on paper, tell them what it 
did after they interacted - don’t tell them first! 

• Can save thousands * of hours of programming UI!
* Not guaranteed.



SOLUTIONS

• User observation 

• Watch them use similar software or a beta version of your own 

• DO NOT INTERRUPT 

• If you want to ask questions, ask afterwards 

• Allows an independent view of what is easy/difficult/
overcomplicated/etc.



SOLUTIONS

• Be prepared to modify your software based on future 
communications 

• Requirements/user stories/etc. will change if you are interacting 
with the customer directly to determine what they want 

• Develop your software with that in mind 

• Avoid over-engineering!


