INTERACTING WITH
STAKEHOLDERS AND
ELICITING REQUIREMENTS



SOFTWARE DEVELOPMENT IS NOT

SITTING AT A DESK BY YOURSELF ALL DAY

» Communication is an essential aspect of
software development

* In some roles, communication is the majority of
all work done

* Yes, email can count as work




R-E-S-P-E-C-T
FIND OUT WHAT IT MEANS TO THE TEACHER OF THE CLASS

 Remember that others have skills that you don't
have, as well as different valuable experiences and
perspective

* Don’t go into conversations looking to mentally
intimidate, but to get information

* Remember to be polite - ask, don’t request unless
necessary




ESPERANTO, BUDDY!

DOYOU SPEAK
s

memegenerator.net




CARE ENOUGH TO LEARN THEIR LANGUAGE

(WHICH IS PROBABLY NOT ESPERANTO)

Different stakeholders care about different things, and
will have different background

We don’t have a universal language (sorry, Esperantists),

so you will have to learn their language
They may or may not learn yours!

To effectively communicate, you'll need to understand
what they need, how they think, and their domain in
general




ELICITING REQUIREMENTS
OR, “FIGURING OUT WHAT THEY WANT”

| prefer the term “eliciting” rather than “gathering” or
“determining” because it acknowledges that the difficulties
inherent in the task

People often have vague ideas of what needs to be done - they

could not write a detailed specification if they wanted to (and for
the most part, people don’t want to)

They may have many assumptions about how the software
“should” work that you don’t know about

They may not have thought of, or have good answers for, many
questions!




SIGNIFICANT PROBLEMS IN ELICITING REQUIREMENTS

* Non-technical users often may not be aware of “non-functional
requirements” (quality attributes), or how to define acceptable
values for them

* Security
* Performance
 Scalability

* Portability




SIGNIFICANT PROBLEMS IN ELICITING REQUIREMENTS

Customers often do not think to say what the software should
NOT do, or what to do in edge cases

What do to in case of invalid input?

What to do if subsystem, 3rd-party API, etc. goes down?

What are acceptable limitations and parameters to use of the
system?

What happens when a resource is constrained?

What are preferred scenarios for graceful degradation?




SIGNIFICANT PROBLEMS IN ELICITING REQUIREMENTS

» Customers often have trouble being precise

» Software Engineers are used to specifying system to an
absurd degree (“computational thinking”)

* May be qualitative when you need quantitative responses




SOLUTIONS

* Ask questions - ensure that you understand what has been asked
of you

* Repeat back what was said in your own words
» Be as clear as possible - avoid pronouns!
* "It gets the thing, it goes to the other thing, and they see it”

« "The fetcher downloads the weather data, and sends that data
to the parser, which generates a web page and displays it to the
user.”




SOLUTIONS

* Paper prototyping

» “A picture is worth a thousand words”

Draw what you think the system should look like, or
have them do it

Have them interact with it on paper, tell them what it
did after they interacted - don’t tell them first!

Can save thousands * of hours of programming Ul!

* Not guaranteed.




SOLUTIONS

* User observation
* Watch them use similar software or a beta version of your own
DO NOT INTERRUPT
* If you want to ask questions, ask afterwards

 Allows an independent view of what is easy/difficult/
overcomplicated/etc.




SOLUTIONS

Be prepared to modify your software based on future
communications

Requirements/user stories/etc. will change if you are interacting
with the customer directly to determine what they want

Develop your software with that in mind

Avoid over-engineering!




