

Giving a Presentation

How to give a good presentation How to give a good peer review feedback

School of Computing and Information Department of Computer Science

Presentation Logistics

We'll have a midterm presentation session.

All talks must be emailed to me by Thursday midnight the day before your presentation

- Preferred format: PDF
- Alternative format: Powerpoint

>> Send these ASAP. We Powerpoint handles OSes terribly

- Please put a cover page with title, name, and project (So that everyone knows who you are and where you worked)
- Please number your slides!

On the day of your presentation ...

Presentations

- 5 minutes each group OR 10 minutes?
- I will cut you off if you go over
- I will hold up a sign at 1/2 minutes left
- Please DO NOT be late to class!
- Every group member should present something
 This requires planning and organizing
- Slides will be stored in order on my computer
 At end of talk, please close your slides and open next slides

Peer Review Logistics

- Ask questions!
 - Pay attention and do it!
- Please use the review form on course website
 - More on this closer to the date
- I'm looking into how to submit these anonymously
 And easily

Peer Review What Not To Do

Don't be lax but also don't be harsh

Don't judge presenter on the work done

- Judge presenter on how the work was presented
- A peer review is not about ...
 - Humiliating your peer
 - Demonstrating your vast sea of knowledge
 - Complaining about how much time was wasted listening
 - Using wording that triggers an emotional response

SUPERSITE OF

Peer Review What To Do

Take care to write summary of talk

- Shows your peer that you actually paid attention
- Support your overall merit score with data
 - Your subcategory scores should support your overall score
 - Your comments should give further justification

Be constructive

- Positive comments are just as valuable as negative ones
- Remember, the goal is to help your peer

Now let's talk about giving a good talk

But first, some slide design fails

Admire my beautiful slide

OUTLINE

- Introduction
- Experimental
- Results
- Discussion
- Conclusions
- Future Work

SUTERIAL CONTRACTOR

Admire my beautiful slide

A slide is not a work of art - curb your enthusiasm

Fonts, colors, and style should be consistent
 If not, the difference should convey a meaning

Also remember, a portion of population is color blind

By the way, was that outline slide *really* necessary?
 Most talks are structured that way - no information content

Look at all the unused space

- Look at how much space you have unused on the top
- Now look at me

- Now look at how much space you have unused below
- Now I don't have space for another meme :'(

Video

Look at it! Can't you see it?

Maybe larger?

Video

d OBS File Edit View Profile Scene Collection Tools Help

nil jobediah -/Dropbox/Pittsburgh/Classes/C58447/2028/Autograder \$

🕒 📴 🐺 🔮 🗆 🔿 🖷 👉 🖁 🦃 🗢 🖬 🦉 🗣 🛛 Fri Feb 7 10:48 🔍 🚍

"jebodian.cs.pitt.edu" 18:48 87-Feb 2

Video

Maybe focus on what matters ③

"jebediah.cs.pitt.edu" 10:53 07-Feb-20

Look at my code, my code is amazing

Algorithm 1 A simple recursive scoring scheme.	_
1: Function score $(p \in \mathcal{P}, A.R \in \mathcal{R}, v \subseteq \mathcal{V}) : \mathbb{R}$	
2: // Filter credentials and initialize storage vector	
3: $C = \{c_i \mid c_i \in v.C \land head(c) = A.R\}$	
4: Discard all $c_i \in C$ of the form $A.R \leftarrow P', P' \neq P$	
5: $\bar{s} = [1, 0, \dots, 0]$ // vector in $\mathbb{R}^{ C +1}$	
6:	
7: for all $c_i \in C$ do	
8: $\overline{w_i} = v.\mathcal{A}.\text{weight}(c_i) // \text{weight vector for } c_i$	
9: if $c_i = A.R \leftarrow P$ then	
10: $\bar{t} = [1, 1]$	
11: else if $body(c_i) = B_1 \cdot R_1 \cap \cdots \cap B_k \cdot R_k$ then	
12: $t = [1, B_1.\text{score}(p, B_1.R_1), \dots, B_k.\text{score}(p, B_k.R_k)]$	
13: else if $body(c_i) = A.R_1.R_2$ then	
14: Find $B \subseteq A.R_1$ such that $\forall B_j \in B : P \in B_j.R_2$	
15: $t = [1, max_{B_j \in B}(B_j.\text{score}(p, B.R_2))]$	
16: if \overline{t} contains any 0 entries then	
17: $\overline{s}[i] = 0$	
18: else	
$19: \qquad \overline{s}[i] = \overline{t} \cdot \overline{w_i}$	
20:	
21: // Get master weight vector and combine all weights	
22: $\overline{w} = v.\mathcal{A}.weight(A.R)$	
23: return $\overline{s} \cdot \overline{w}$	

Look at my code, my code is amazing

Hate to break it to you but ...

Nobody wants to read your code (if avoidable)

- Nobody wants to read your code (if not avoidable)
 Nobody wants to read your code (period ;)
- If you really feel the need ...
 - At least explain at a high level what the code is trying to do
 - Focus audience attention at the part that is interesting

Towers of Hanoi

Move all disks from a tower to another. You can use a third temporarily.

Move n-1 disks into "temp"

Move 1 disk into "dest"

Move n-1 disks into "dest"

SUTERIA DE LE CONTRACTOR DE LE CONTRACTO

By the power of recursion!!!

Recursive solution for the Hanoi towers

```
Void solve hanoi(n, src -> dest, temp)
   if (n == 0) return; Solve moving 0 disks!
    solve hanoi(n-1, src -> temp, dest);
   move(from, to);
                        Moving one disk is easy
    solve hanoi(n-1, temp -> dest, src);
Solve moving n-1 disks with the power of recursion!
```

I am a math whiz

$$\operatorname{score}(p, A.R, v) = \sum_{(C_i, w_i) \in \operatorname{osets}_{\omega}(v.C, A.R)} w_i \cdot \frac{1}{2}^i$$

$$\omega_{len}(C_s, _) = \gamma^{\max_{p \in \mathsf{paths}(C_s)}(\mathsf{length}(p))}$$
$$\omega_{ind}(C_s, C) = 1 - \frac{\max_{C_i \in C \setminus \{C_s\}}(|C_s \cap C_i|)}{|C_s|}$$
$$\omega_{li}(C_s, C) = \alpha \cdot \omega_{len}(C_s, _) + \beta \cdot \omega_{ind}(C_s, C)$$

SUTTER UN

l am a math whiz

• Well guess what. Many are not.

Translate math to plain English whenever you can

At least highlight what matters, and what is the take home message

Just read my text

Proof sketch:

Monotonic. To prove the monotonicity of Equation 6, we proceed by induction. We first assume that principal p has previously discovered the (ordered) collection of proofs and weights $(C_1, w_1), \ldots, (C_n, w_n)$ for the role A.R. The base case that we must consider is that a new pair (C_s, w_s) is discovered such that no weight w_i is less than w_s . In this case, this new pair will introduce a new term to the end of the summation calculated by Equation 6, thereby increasing principal p's score for the role A.R.

Assume that (C_s, w_s) can be inserted before up to n terms in the sequence of (c_i, w_i) pairs while still preserving the monotonicity requirement. Now, assume that p has previously found proofs of authorization with the sequence of weights S = $(C_1, w_1), \ldots, (C_i, w_i), \ldots, (C_{i+n}, w_{i+n})$ and has now discovered a (C_s, w_s) pair such that $w_s > w_i$, thereby needing to be inserted before n + 1 terms in the sequence S. We first note that replacing (C_i, w_i) with (C_s, w) will generate a sequence S' that—when used in conjunction with Equation 6—will produce a score greater than that produced using S, since $w_s > w_i$ and all other terms are the same. By the inductive hypothesis, (C_i, w_i) can then be re-inserted before the n final terms of S' while still preserving monotonicity.

A STATE OF THE OWNER OWNE

Just read my text

Then why am I listening to you?

Having too much to read can interfere with listening

Did you know?
 Reading and listening exercise same part of brain

Content and delivery are just as (perhaps more) important

Issues with Content and Delivery

Issues with content:

- Why should we care about the problem?
- How will the results be useful in practice?
- Had no idea where talk was going!
- Missing context to understand problem setup

Issues with delivery:

- Lack of eye contact
- Lecturing to the board/laptop, not the audience
- Speaks too quickly / too slowly
- Overruns allotted time

Structure your talk based on your audience and the time that you have

Your audience: Generally smart individuals

- Computer Scientists? Yes
- Knowledgeable about your area? Maybe
- Knowledgeable about your problem? Probably not

Time is usually limited

- Invited talk: < 1 hour</p>
- Conference talk: 20 minutes or so
- Elevator talk: < 2 minutes</p>
- Your talk: 5-10 minutes

This is not a lot of time...

Bottom line: Your audience should learn something from your talk

That's not a lot of time, how should I structure my talk to relate to these people?

This is a hard ... with interesting problem...

applications...

... that builds on prior work...

Two sub-parts:

- You solved a problem
- You used neat technological advancements to do this

Hint: Try to give audience one good take-home point

It's not just what you say, but how you say it

Body language says a lot

- Make eye contact with your audience
 Corollary: Face your audience
- Some movement is good
- Don't speak too fast (or too slow!)

Make useful slides

- One primary idea per slide
- Use slide titles to convey take-away message
- Do not read your slides!
 - But put all important information there!
- A picture is worth a thousand words...

A picture is worth a thousand words

 Edward R. Tufte, *The Visual Display of Quantitative Information*.
 Graphics Press (2001)

Graphic shows fluctuating mail workload in sync with the timing of political elections

Practice, Practice, Practice

Practice makes better

- *Alone*: Work on your "script," smooth out transitions
- *Peer group*: Get used to other people being around
- Broader population: Assess outsider comprehensibility
- "Flash" is good, but too much flash is distracting
 - *Good*: Animations to progressively build diagrams
 - Bad: Animating every slide transition, every line
- Make sure you refer to every item on a slide
 - If you don't, it is always better to remove that item

It takes three weeks to prepare a good ad-lib speech

