
Giving a Presentation
How to give a good presentation
How to give a good peer review feedback

School of Computing and Information
Department of Computer Science

1

Presentation Logistics

n We’ll have a midterm presentation session.

n All talks must be emailed to me by Thursday midnight
the day before your presentation
l Preferred format: PDF
l Alternative format: Powerpoint

!Send these ASAP. We Powerpoint handles OSes terribly

l Please put a cover page with title, name, and project
(So that everyone knows who you are and where you worked)

l Please number your slides!

2

On the day of your presentation …

n Presentations
l 5 minutes each group OR 10 minutes?
l I will cut you off if you go over
l I will hold up a sign at 1/2 minutes left

n Please DO NOT be late to class!

n Every group member should present something
l This requires planning and organizing

n Slides will be stored in order on my computer
l At end of talk, please close your slides and open next slides

3

Peer Review Logistics

n Ask questions!
l Pay attention and do it!

n Please use the review form on course website
l More on this closer to the date

n I’m looking into how to submit these anonymously
l And easily

4

Peer Review What Not To Do

n Don’t be lax but also don’t be harsh

n Don’t judge presenter on the work done
l Judge presenter on how the work was presented

n A peer review is not about …
l Humiliating your peer
l Demonstrating your vast sea of knowledge
l Complaining about how much time was wasted listening
l Using wording that triggers an emotional response

5

Peer Review What To Do

n Take care to write summary of talk
l Shows your peer that you actually paid attention

n Support your overall merit score with data
l Your subcategory scores should support your overall score
l Your comments should give further justification

n Be constructive
l Positive comments are just as valuable as negative ones
l Remember, the goal is to help your peer

6

Now let’s talk about giving a good talk

7

But first, some slide design fails

8

Admire my beautiful slide

9

Admire my beautiful slide

n A slide is not a work of art – curb your enthusiasm

n Fonts, colors, and style should be consistent
l If not, the difference should convey a meaning

n Also remember, a portion of population is color blind

n By the way, was that outline slide really necessary?
l Most talks are structured that way – no information content

10

Look at all the unused space

• Look at how much space you have unused on the top

• Now look at me

• Now look at how much space you have unused below

• Now I don’t have space for another meme :’(

11

Video

n Look at it! Can’t you see it?

n Maybe larger?

12

Video

Video

n Maybe focus on what matters J

Look at my code, my code is amazing

Algorithm 1 A simple recursive scoring scheme.
1: Function score(p ⌦ P, A.R ⌦ R, v ⇧ V) : R
2: // Filter credentials and initialize storage vector
3: C = {ci | ci ⌦ v.C ◆ head(c) = A.R}
4: Discard all ci ⌦ C of the form A.R ⌥ P �, P � ↵= P
5: s = [1, 0, . . . , 0] // vector in R|C|+1

6:
7: for all ci ⌦ C do
8: wi = v.A.weight(ci) // weight vector for ci

9: if ci = A.R ⌥ P then
10: t = [1, 1]
11: else if body(ci) = B1.R1 ✓ · · · ✓ Bk.Rk then
12: t = [1, B1.score(p, B1.R1), . . . , Bk.score(p, Bk.Rk)]
13: else if body(ci) = A.R1.R2 then
14: Find B ⇧ A.R1 such that �Bj ⌦ B : P ⌦ Bj .R2
15: t = [1, maxBj⇥B(Bj .score(p, B.R2))]

16: if t contains any 0 entries then
17: s[i] = 0
18: else
19: s[i] = t · wi

20:
21: // Get master weight vector and combine all weights
22: w = v.A.weight(A.R)
23: return s · w

by A, while information regarding roles other than A.R is
obtained by recursively issuing requests to the principals
defining these roles.

This naive authorization scoring scheme can be viewed
as a simplification of the RT proof construction process
that only builds proofs of height 1. Specifically, the root
of each proof tree is a node representing the role A.R
and the leaves of the proof tree are credentials asserting
a simple membership in the roles directly used to define
membership in A.R. This allows principals to hide the
details of exactly how membership in roles that they define is
determined from other principals in the system by replacing
sub-proofs encoding proof structure with simple membership
credentials asserting that membership has been verified. This
is similar in spirit to the proofs of authorization constructed
in the Minami-Kotz distributed proof system [24], which
hide the structure of a proof from unauthorized users.

Scoring Construction. Evaluating role memberships
given only this limited information can be viewed as a
process similar to the recursive resolution of DNS queries
or the lazy proof construction process used within the Grey
distributed proof system [2]. Algorithm 1 shows how such an
authorization scoring function can be designed. This naive
algorithm assumes that each credential ci defining some role
A.R is associated with a weight vector wi described in A’s
auxiliary information A. The first entry of this vector is a
constant factor and the remaining entries are scaling factors
for the scores computed for each role in the body of ci. the
score for a given credential is then computed as the linear
combination represented by the dot product of this vector
with the vector of scores gathered recursively for each role
in the body of ci.1 We require that every such wi contains

1The constant factor can be used to adjust the “baseline” score for a
proof of access generated using a given credential. Setting this term to
zero scores the proof using only the scores returned for each sub-proof.

only non-negative entries and that ||wi||1 = 1.
We further assume that each role A.R is associated with

another weight vector w, the first entry of which is, again, a
constant factor. The second entry in this vector is a scaling
factor that is associated with principals who are defined
through simple membership to be a member of A.R. The
remaining entries in w are scaling factors for the scores
computed for each credential ci that defines membership in
A.R The final score for the role A.R is then computed as
the linear combination represented by the dot product of w
and the scores calculated for each ci defining A.R. Again,
w is assumed to be encoded in the additional information
A maintained by the principal A, and we require that w
contains only non-negative entries and that ||w||1 = 1.

Example. To more concretely demonstrate the scoring
function defined in Algorithm 1, consider the following RT 0

role definitions:

Univ.auth CS.student ⇡ACM.member (3)
Univ.auth Univ.techDept.gradStudent (4)

This policy states that computer science students who
are ACM members, and graduate students within technical
departments at Univ to be members of the role Univ.auth.
Assume that the weight vector for credential (3) is defined
as [0, 0.7, 0.3], which gives more weight to the role defined
by the CS department at Univ than to the role defined by
the ACM. Further, assume that the master weight vector
for Univ.auth is defined as [0, 0.5, 0.25, 0.25], where the
entries in this vector reflect a constant factor of 0, and the
weights assigned to simple members of Univ.auth, creden-
tial (3), and credential (4), respectively. This implies that
simple membership in Univ.auth is strongly preferred over
proofs that involve delegation to other principals, and that
both types of delegated proofs are given equal preference.

Properties. Although extremely simple to implement, this
naive scoring function can be shown to satisfy a number of
the properties identified in Section III-B. In particular, we
have the following theorem:

Theorem 1: The function score : P⇤R⇤V ⌦ R defined
in Algorithm 1 satisfies the deterministic, simple ordering,
authorization relevant, bounded, and monotonic properties.

Proof: To prove the above claim, we address each
property one at a time:

• Deterministic. Note that the score function does not
make use of any randomized information. Provided that
system policies and weight vectors do not change, two
invocations of score(p, A.R, v) will always return the
same value.

• Simple Ordering. The check on Line 16 of Algo-
rithm 1 ensures that non-zero scores are only recorded
for members of a role, while non-members of a role

15

Look at my code, my code is amazing

n Hate to break it to you but …

n Nobody wants to read your code (if avoidable)
l Nobody wants to read your code (if not avoidable)

!Nobody wants to read your code (period ;)

n If you really feel the need …
l At least explain at a high level what the code is trying to do
l Focus audience attention at the part that is interesting

16

n Move all disks from a tower
to another. You can use a
third temporarily.

Towers of Hanoi

n Move n-1 disks into “temp”

n Move 1 disk into “dest”

n Move n-1 disks into “dest”

src desttemp

By the power of recursion!!!

n Recursive solution for the Hanoi towers

Void solve_hanoi(n, src -> dest, temp)
{

if (n == 0) return;
solve_hanoi(n-1, src -> temp, dest);
move(from, to);
solve_hanoi(n-1, temp -> dest, src);

}

Solve moving 0 disks!

Moving one disk is easy

Solve moving n-1 disks with the power of recursion!
18

I am a math whiz

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs,) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs,) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student CS.gradStudent Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃(,) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs,) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs,) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student CS.gradStudent Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃(,) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

19

I am a math whiz

n Well guess what. Many are not.

n Translate math to plain English whenever you can

n At least highlight what matters, and what is the
take home message

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs,) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs,) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student CS.gradStudent Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃(,) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

Increasing the elements
of decreases the
value of the function

decreasing order of their robustness as reported by ⌃.

score(p, A.R, v) =
⇤

(Ci,wi)⌦osets�(v.C,A.R)

wi ·
1
2

i

(6)

Equation 6 first computes all minimal proofs contained
within the set C of credentials and then orders these proofs
according to the robustness function ⌃. The final score is
then computed as a function of both the number of proofs
found, as well as the robustness ratings for each proof.
Several interesting notions of proof robustness can in fact
be encoded using this type of ⌃ function:

⌃len(Cs,) = ⇤maxp⇥paths(Cs)(length(p)) (7)

⌃ind(Cs, C) = 1�
maxCi⌦C\{Cs}(|Cs ⇡ Ci|)

|Cs|
(8)

⌃li(Cs, C) = � · ⌃len(Cs,) + ⇥ · ⌃ind(Cs, C) (9)

In particular, the function ⌃len defined in Equation 7
computes the scaling factor for a proof Cs by first computing
the longest root-to-leaf path in the proof tree entailed by
the set Cs, and then raising a constant ⇤ � [0, 1] to this
power. Since longer paths will produce lower scaling factors,
⌃len gives preference to shorter paths. This is sensible if
the principal scoring proofs of authorization prefers to see
proofs with short delegation chains.

On the other hand, the function ⌃ind defined in Equation 8
computes the scaling factor for a proof Cs by analyzing
how disjoint this proof is when compared to other proofs in
C \ {Cs}. In particular, a higher ⌃ind score implies a more
disjoint path. This definition of robustness is important if
the principal scoring proofs of authorization is concerned
about changes to the policies parameterizing the system.
Specifically, a principal that can produce a collection of
highly disjoint proofs is less likely to be affected by one (or
more) changes to the policies parameterizing the system than
a principal who produces a largely overlapping collection
of proofs. Finally, the wli function defined in Equation 9
quantifies robustness by means of combining ⌃len and ⌃ind

using the constants �,⇥ � [0, 1] chosen such that �+⇥ = 1.
Example. To demonstrate the class of scoring functions

defined by Equations 5–9, we will build upon the example
presented in Section IV-A. Consider the following set of
RT 0 policy credentials:

Univ.auth CS.student ⇡ACM.member (10)
Univ.auth Univ.techDept.gradStudent (11)

Univ.techDep CS (12)
CS.student CS.ugrad (13)

CS.student CS.gradStudent (14)
CS.gradStudent Alice (15)
ACM.member Alice (16)

Note that two proofs can be constructed that grant
Alice access to the role Univ.auth, namely C1 =

{(10), (14), (15), (16)} and C2 = {(11), (12), (15)}.
Note that the longest path in C1 is of length 3
(i.e., CS.student CS.gradStudent Alice),
while the longest path in C2 is of length 2 (i.e.,
Univ.techDept.gradStudent Alice). If we let C =
{C1, C2}, v = �⌘, {(10), . . . , (16)}, ⌘�, and ⇤ = 0.9, we
have the following:

⌃len(C1, C) = 0.93 = 0.729
⌃len(C2, C) = 0.92 = 0.81

⌃ind(C1, C) = 1� |C1 ⇡ C2|
|C1|

= 1� 1
4

=
3
4

⌃ind(C2, C) = 1� |C2 ⇡ C1|
|C2|

= 1� 1
3

=
2
3

It follows that the scoring function defined by Equation 5
calculates score(Alice, Univ.auth, v) = 1

2 + 1
4 = 3

4 . Simi-
larly, the scoring function defined by Equations 6 and 7 gives
us that score(Alice, Univ.auth, v) = 0.92 · 1

2 + 0.93 · 1
4 =

0.58725. Lastly, the scoring function defined by Equations 6
and 8 gives us that score(Alice, Univ.auth, v) = 3

4 · 1
2 +

2
3 · 1

4 = 13
24 ⌥ 0.5417.

Properties. The class of scoring functions described by
Equations 5–9 can be shown to satisfy a number of the
important properties identified in Section III-B. Since Equa-
tion 5 can trivially be represented by Equation 6 when osets
is parameterized by the function ⌃(,) = 1, we have the
following theorem:

Theorem 2: The class of scoring functions score : P ⇤
R ⇤ V ⌦ R represented by Equation 6 satisfies the deter-
ministic, simple ordering, authorization relevant, bounded,
and monotonic properties, provided that the scaling function
⌃ : 2C⇤22C ⌦ [0, 1] used to parameterize the osets function
is deterministic.

Proof: To prove the above claim, we will focus on each
property individually:

• Deterministic. The ⌃ function used to parameterize
osets is the only potential source of non-determinism
in Equation 6. Since ⌃ is assumed to be deterministic,
the class of scoring functions score represented by
Equation 6 is therefore also deterministic.

• Simple Ordering. Note that the osets⇥(C, A.R) func-
tion locates and rank-orders the proofs of authorization
for the role A.R that are contained in the set C of
credentials. As a result, a principal who cannot produce
any proofs for the role A.R will always be assigned a
score of 0. Further, principals who can produce one
or more proofs for the role A.R will always receive a
score of at least 0. This trivially satisfies the simple
ordering property.

• Authorization Relevant. By Definition 5, every cre-
dential in a minimal proof for some role A.R is relevant

20

Just read my text

n Proof sketch:

to the proof of membership in A.R. Since osets only
ranks and returns minimal proofs for A.R, Equation 6
does not consider any irrelevant information when
scoring proofs of authorization. As such, irrelevant
information cannot influence the score produced by
Equation 6.

• Bounded. Note that sum of the infinite geometric series⇥
i=1

1
2

i converges to 1. Since every term in this
summation is positive, we have that ✏1⌃j :

⇥j
i=1

1
2

i
<⇥j+1

i=1
1
2

i. As a result, the sum of any sub-series of
the infinite series will converge to some value in the
range [0, 1). Equation 6 is nothing more than such a
summation in which each term is scaled by a weight
wi � [0, 1]. As a result, Equation 6 is bounded below
by 0 and bounded above by 1.

• Monotonic. To prove the monotonicity of Equation 6,
we proceed by induction. We first assume that principal
p has previously discovered the (ordered) collection of
proofs and weights (C1, w1), . . . , (Cn, wn) for the role
A.R. The base case that we must consider is that a new
pair (Cs, ws) is discovered such that no weight wi is
less than ws. In this case, this new pair will introduce
a new term to the end of the summation calculated by
Equation 6, thereby increasing principal p’s score for
the role A.R.
Assume that (Cs, ws) can be inserted before up
to n terms in the sequence of (ci, wi) pairs while
still preserving the monotonicity requirement. Now,
assume that p has previously found proofs of au-
thorization with the sequence of weights S =
(C1, w1), . . . , (Ci, wi), . . . , (Ci+n, wi+n) and has now
discovered a (Cs, ws) pair such that ws > wi, thereby
needing to be inserted before n + 1 terms in the
sequence S. We first note that replacing (Ci, wi) with
(Cs, w) will generate a sequence S� that—when used
in conjunction with Equation 6—will produce a score
greater than that produced using S, since ws > wi

and all other terms are the same. By the inductive
hypothesis, (Ci, wi) can then be re-inserted before the
n final terms of S� while still preserving monotonicity.

We have therefore shown that the class of scoring func-
tions score : P ⇤R ⇤ V ⌦ R represented by Equation 6
satisfies the deterministic, simple ordering, authorization rel-
evant, bounded, and monotonic properties, provided that the
scaling function ⌃ : 2C ⇤ 22C ⌦ [0, 1] used to parameterize
the osets function is deterministic.

As was discussed earlier in this section, it is also possible
for the score function defined by Equation 6 to satisfy the
interpretation property. In particular, when using the trivial
scaling function ⌃(,) = 1, a higher score implies that
more paths have been found. Similarly, when other notions
of robustness are encoded by representative ⌃ functions,

r � v.S

r /� v.S

Figure 2. One possible scenario in which hybrid authorization scoring
strategies could be beneficial. The oval denotes the security domain of the
principal carrying out the authorization scoring process.

score(p, A.R, v) > score(p�, A.R, v) implies that principal
p can produce more robust proofs of authorization that
principal p�, relative to the notion of robustness encoded
by the particular ⌃ function used.

C. Hybrid Scoring Functions

Although the authorization scoring functions discussed in
Sections IV-A and IV-B are useful, they in fact represent two
opposite extremes in terms of the information available to
the principal scoring proofs of authorization. The recursive
scoring function described by Algorithm 1 assumes that this
principal has access only to credentials defined within her
domain, while the scoring function encoded by Equations 6–
9 assumes that incomplete information is discovered at
runtime. In many cases, the information available to the
principal scoring proofs of authorization is likely to fall
somewhere between these two points.

Figure 2 illustrates one such scenario. In this situation, the
principal (Alice) scoring proofs of authorization is assumed
to have complete knowledge of the set of roles vA.S within
the domain encoded in her view vA. However, she is also
able to use, e.g., credential chain discovery techniques to
discover credentials defining roles outside of her domain,
with the proviso that she may not be able to uncover every
credential defining a particular role. Given that she has
complete knowledge of not only the structure of policies
within her domain, but also of the semantics of the roles
involved in these policies, Alice may wish to fine-tune her
mechanism for scoring membership within these roles to
reflect her “insider knowledge.” For instance, she could
accomplish this by developing very specific weight vectors
for use in conjunction with Algorithm 1.

At the same time, rather than delegating the scoring of
membership in roles outside of vA.S to the parties defining
those roles—as in Algorithm 1—Alice may wish to leverage
her ability to carry out distributed credential discovery

21

Just read my text

n Then why am I listening to you?

n Having too much to read can interfere with listening
l Did you know?

Reading and listening exercise same part of brain

22

Content and delivery are just as
(perhaps more) important

23

Issues with Content and Delivery

n Issues with content:
l Why should we care about the problem?
l How will the results be useful in practice?
l Had no idea where talk was going!
l Missing context to understand problem setup

n Issues with delivery:
l Lack of eye contact
l Lecturing to the board/laptop, not the audience
l Speaks too quickly / too slowly
l Overruns allotted time

24

Time is usually limited
l Invited talk: < 1 hour
l Conference talk: 20 minutes or so
l Elevator talk: < 2 minutes
l Your talk: 5-10 minutes

This is not a lot of time…

Bottom line: Your audience should learn something from your talk

Structure your talk based on your audience and
the time that you have

Your audience: Generally smart individuals
l Computer Scientists? Yes
l Knowledgeable about your area? Maybe
l Knowledgeable about your problem? Probably not

25

That’s not a lot of time, how should I structure my talk
to relate to these people?

This is a hard
problem…

… with interesting
applications…

… that builds on
prior work…

Two sub-parts:
l You solved a problem
l You used neat technological

advancements to do this

Hint: Try to give audience one good take-home point

It’s not just what you say, but how you say it

Body language says a lot
l Make eye contact with your audience

! Corollary: Face your audience

l Some movement is good
l Don’t speak too fast (or too slow!)

Make useful slides
l One primary idea per slide
l Use slide titles to convey take-away message
l Do not read your slides!

lBut put all important information there!
l A picture is worth a thousand words…

27

A picture is worth a thousand words

n Edward R. Tufte, The
Visual Display of
Quantitative Information.
Graphics Press (2001)

n Graphic shows
fluctuating mail
workload in sync with
the timing of political
elections

Election year

Number of letters
sent by congress.

Practice, Practice, Practice

n Practice makes better
l Alone: Work on your “script,” smooth out transitions
l Peer group: Get used to other people being around
l Broader population: Assess outsider comprehensibility

n “Flash” is good, but too much flash is distracting
l Good: Animations to progressively build diagrams
l Bad: Animating every slide transition, every line

n Make sure you refer to every item on a slide
l If you don’t, it is always better to remove that item

It takes
three weeks
to prepare a
good ad-lib

speech

29

